Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones
نویسندگان
چکیده
In budding yeast, mating pheromones arrest the cell cycle in G1 phase via a pheromone-activated Cdk-inhibitor (CKI) protein, Far1. Alternate pathways must also exist, however, because deleting the cyclin CLN2 restores pheromone arrest to far1 cells. Here we probe whether these alternate pathways require the G1/S transcriptional repressors Whi5 and Stb1 or the CKI protein Sic1, whose metazoan analogues (Rb or p27) antagonize cell cycle entry. Removing Whi5 and Stb1 allows partial escape from G1 arrest in far1 cln2 cells, along with partial derepression of G1/S genes, which implies a repressor-independent route for inhibiting G1/S transcription. This route likely involves pheromone-induced degradation of Tec1, a transcriptional activator of the cyclin CLN1, because Tec1 stabilization also causes partial G1 escape in far1 cln2 cells, and this is additive with Whi5/Stb1 removal. Deleting SIC1 alone strongly disrupts Far1-independent G1 arrest, revealing that inhibition of B-type cyclin-Cdk activity can empower weak arrest pathways. Of interest, although far1 cln2 sic1 cells escaped G1 arrest, they lost viability during pheromone exposure, indicating that G1 exit is deleterious if the arrest signal remains active. Overall our findings illustrate how multiple distinct G1/S-braking mechanisms help to prevent premature cell cycle commitment and ensure a robust signal-induced G1 arrest.
منابع مشابه
Mating pheromones of Saccharomyces kluyveri: pheromone interactions between Saccharomyces kluyveri and Saccharomyces cerevisiae.
Saccharomyces kluyveri is a heterothallic yeast with two allelic mating types denoted as a-k and alpha-k by analogy with Saccharomyces cerevisiae and from the work described here. S. kluyveri produces mating pheromones analogous to those of S. cerevisiae, but which appear to have different specificity. S. kluyveri thus differs from S. cerevisiae, Hansenula wingei, and Schizosaccharomyces pombe ...
متن کاملFission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34cdc2 kinase.
Yeast pheromones block cell cycle progression in G1 in order to prepare mating partners for conjugation. We have investigated the mechanism underlying pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe. We find that the G1-specific transcription factor p65cdc10-p72res1/sct1 which controls the expression of S-phase genes is fully activated in pheromone, unlike the analogo...
متن کاملRobust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair.
Although most eukaryotes can arrest in G1 after ionizing radiation, the existence or significance of a G1 checkpoint in S. cerevisiae has been challenged. Previous studies of G1 response to chemical mutagens, X-ray or UV irradiation indicate that the delay before replication is transient and may reflect a strong intra-S-phase checkpoint. We examined the yeast response to double-stranded breaks ...
متن کاملA Mechanism for Cell-Cycle Regulation of MAP Kinase Signaling in a Yeast Differentiation Pathway
Yeast cells arrest in the G1 phase of the cell cycle upon exposure to mating pheromones. As cells commit to a new cycle, G1 CDK activity (Cln/CDK) inhibits signaling through the mating MAPK cascade. Here we show that the target of this inhibition is Ste5, the MAPK cascade scaffold protein. Cln/CDK disrupts Ste5 membrane localization by phosphorylating a cluster of sites that flank a small, basi...
متن کاملRegulation of Cyclin-Substrate Docking by a G1 Arrest Signaling Pathway and the Cdk Inhibitor Far1
Eukaryotic cell division is often regulated by extracellular signals. In budding yeast, signaling from mating pheromones arrests the cell cycle in G1 phase. This arrest requires the protein Far1, which is thought to antagonize the G1/S transition by acting as a Cdk inhibitor (CKI), although the mechanisms remain unresolved. Recent studies found that G1/S cyclins (Cln1 and Cln2) recognize Cdk su...
متن کامل